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Simulation of fabric development in recrystallizing aggregates---l. 
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Abstract - -A new computer simulation of the development of grain shape and crystallographic preferred 
orientations in dynamically recrystallizing aggregates is presented. This model is based on a uniform array of 
points, each of which represents a small area of crystal. This model combines homogeneous strains, simplified 
versions of the lattice rotations predicted by Taylor-Bishop-Hill theory, mobile grain boundaries and the 
nucleation of subgrains. It allows the progressive development of the fabrics and microstructures to be followed. 
The limitations of the simplifying assumptions used in this model are discussed. 

INTRODUCTION 

Ix HAS long been recognized that there is some interplay 
between dynamic recrystallization and lattice rotations 
during fabric development (Kamb 1972, Duval 1981, 
Bouchez et al. 1983, Urai et al. 1986, Karato 1987); 
however, the exact nature of this relationship has been 
unclear. Current models of fabric development are 
solely based on the lattice rotations associated with 
crystal slip. Etchecopar's (1977) model did involve the 
bisection of grains in locked orientations; however this 
more properly modeled a fracturing rather than a recrys- 
tallization process. Recently Etchecopar & Vasseur 
(1987) have extended Etchecopar's (1977) model to 
allow more than one slip system to operate, and they 
included an explicit attempt to simulate the effects of 
recrystallization by resetting the grain shape to a foam 
texture at periodic intervals. Since this does not mimic 
any specific recrystallization processes, their study can- 
not investigate the relative roles of these processes in 
grain shape and crystallographic fabric development. 

The goal of this study was to develop a simple com- 
puter simulation that could analyse the coupling of 
dynamic recrystallization processes and internal lattice 
rotations. The basis for the simulation is presented in 
this paper, and the results of a number of example runs 
are presented in a companion paper (Jessell 1988). 

BASIS OF PRESENT MODEL 

In recent years metallurgists have developed a number 
of Monte Carlo simulations of static grain growth and 
primary recrystallization in two dimensions (Anderson 
et al. 1984, Ceppie & Nasello 1984, Fradkov et al. 1985, 
Soares et al. 1985, Yabushita et al. 1985, Saetre et al. 

1986). The most successful of these use a system of 
regularly spaced points (Anderson et al. 1984, for 
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example), with each point having a specific crystallo- 
graphic orientation (Fig. 1). Two neighbouring points 
which have the same orientation are considered to be 
part of the same grain, and two points with different 
orientations are separated by a grain boundary. The 
results of the grain growth simulations which are least 
dependent on the geometry of the array of points were 
found using a triangular array, and that is the pattern 
adopted here. By manipulating the positions and orien- 
tations associated with each point it is possible to model 
not only grain growth, but also several deformation 
processes. A flow chart that describes the simulation is 
shown in Fig. 2, and in the following sections each 
element of the simulation will be explained. 

FABRIC INITIALIZATION 

The original triangular array consists of a 100 x 100 set 
of points forming a rectangle whose sides are in the ratio 
of 1 : 1.15. Each point in this array is initially assigned a 
lattice orientation such that the array is divided up into 
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Fig. 1. Triangular array of points, which forms the basis of the model. 
Numbers refer to crystallographic orientations and the distribution of 
these numbers defines grain shapes. Grain 2 is a complete hexagonally- 

shaped grain with the standard initial grain size of 37 units. 
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Fig. 2. Flow chart showing the relationship between the basic elements 
of the model. Refer to text for details of each element. 

At the start of the simulation the conditions of defor- 
mation are set, and they remain constant throughout an 
individual run. Once the initial grain configuration has 
been set, the simulation consists of the iterative repeti- 
tion of four syn-deformational processes: (1) redistri- 
bution of points to simulate strain; (2) reorientation of 
the crystallographic orientations of grains due to slip; 
(3) grain boundary migration; and (4) the nucleation of 
subgrains. Before each iteration a map of the grain 
boundaries is produced, together with the associated 
c-axis fabric diagrams. 

STRAIN INCREMENT 

The simulation of an increment of homogeneous 
strain is accomplished using different principles for 
simple shear and axially symmetric flattening. These are 
described separately. 

areas of equal orientation ('grains') with each grain 
consisting of 37 points. This number will henceforth be 
referred to as a grain size of 37 units. This model only 
considers one lattice orientation, here the c-axis of a 
trigonal or hexagonal material (such as quartz or ice, 
respectively) since the simple treatment of straining, 
lattice rotations and stored energy levels does not justify 
a more sophisticated approach. Each grain is randomly 
assigned an orientation, and the initial state consists of 
300 grains (Fig. 3a), some of which are truncated by the 
borders of the array. 

Simple shear 

Progressive dextral simple shear is approximated by 
shifting successive rows of points in the array to the left. 
The shear strain, 7, for one iteration was set at 0.19, 
which corresponds to a shortening of 9.95%. Since 
continuity within the model can only be maintained by 
shifting rows an integral number of positions to the left, 
a shear strain of 0.19 is distributed through 100 rows by 
taking up the shear as a shift of one position across 19 
randomly chosen rows. By ensuring that the rows which 
take up the strain are relatively equally spaced, the 
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Fig. 3. (a) Configuration of grain boundaries in undeformed state. (b) The same grains deformed to a bulk shear strain of 
0.95, with no recrystallization, The finer grains forming an oblique line are the edge grains in the initial fabric. (c) The same 
grains as in (a) axisymmetrically shortened by 38%, with no recrystallization. Notice the inherent area loss and the unwanted 

dissection of grains that results Jn this case. 



the array, since the points do not lie in true columns. 
This results in a much greater disruption of the arrange- 
ment of points than for simple shear (Fig. 3c), although 
it still results in a rough approximation to the geometry 
of axial compression. Average shortening rates of 9% 
per iteration were used. 

strain is quite well distributed after five increments (Fig. 
3b). Some grain break-up may occur at high strains 
purely as a result of the somewhat inhomogeneous 
straining induced by the strain algorithm. 

Since shifting points to the left has the effect of moving 
material beyond the original boundaries of the array on 
the left and leaving empty space on the right, the vertical 
boundaries of the array are periodic, so that material 
that disappears off the left reappears on the right. LATTICE ROTATIONS 

A x i a l l y - s y m m e t r i c  f l a t t e n i n g  

TAYLOR- BISHOP-HILL 

For increments of axially-symmetric flattening, a more 
complex method had to be used. Following the visualiza- 
tion of Bayly (1985), pure shear is seen as the removal of 
material along one set of planes and its addition along an 
orthogonal set of planes. To this end, points are ran- 
domly removed from each column of points, and then 
points are randomly added to each of the reduced 
number of rows. The added points are assigned the same 
orientation as their neighbours to the left. The main 
weakness of this method lies in the triangular nature of 

This model uses the reorientation trajectories for 
quartz c-axes predicted by Taylor-Bishop-Hill theory 
(Lister et  al .  1978) as the basis for calculating the new 
orientations of grains after a given increment of defor- 
mation. Although Taylor-Bishop-Hill (TBH) theory 
requires that the full crystallographic orientation of the 
grain be specified, as a simplification the present model 
only considers the c-axis orientation. Therefore the 
c-axis rotations calculated in this simulation are not 
those predicted by TBH theory, but are gross simplifi- 
cations of those predictions. Reorientation functions 
were developed which mimic the overall patterns of 
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AXIALLY SYMMETRIC FLATTENING 

Fig. 4. Comparison of the lattice rotations predicted by Taylor-Bishop--Hill theory for quartz and the simplified versions 
used in this model. (a) In simple shear, for shear strains of 0.2 (Urai et al. 1986) and 0.19, respectively. (b) In axisymmetric 
flattening, for shortenings of 10% (Lister & Paterson 1979) and 9%, respectively• Equal-area lower-hemisphere projections. 

Points are c-axis orientations before deformation, the strokes show the amount and direction of c-axis rotation. 
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Fig. 5. Comparison of the c-axis fabrics that develop using Taylor-Bishop-Hill theory for quartz and the simplified lattice 
rotations used in this model. (a) In simple shear, for shear strains of 3.0 (Lister & Paterson 1979) and 3.04, respectively. 
(b) In axisymmetric flattening, for shortenings of 65% (Lister & Paterson 1979) and 65% this model. Equal-area 

lower-hemisphere projections. 

c-axis reorientations predicted by TBH theory for 
quartz. In this model then, specification of the c-axis 
orientation and strain increment is sufficient information 
to predict the lattice reorientation. 

Lister's work presents a number of alternative model 
'quartzites' differentiated by the critical resolved shear 
stress values necessary to initiate slip on given glide 
planes (see for example Lister & Paterson 1979), so 
some choice from amongst these models had to be made. 
Lattice rotations based on critical resolved shear stress 
values from their work were chosen such that the c-axis 
fabrics that are predicted to develop have been measured 
in naturally or experimentally deformed quartzites, 
although this does not necessarily mean that the fabrics 
formed in the way TBH theory predicts. Quartz fabrics 
measured in simple shear regimes, both natural (Lister 
& Williams 1979) and experimental (Dell'Angello 1985) 
often produce Type I crossed girdles (Model B, Lister & 
Hobbs 1980), and that is the slip-induced pattern 
adopted here for simple shear. Tullis et al. (1973) sub- 
jected quartzites to axially-symmetric flattening, and the 
lower temperature, higher strain-rate runs produced 

single point maxima parallel to the compression axis, 
and that is the slip-induced pattern chosen for this strain 
geometry (Model A l, fig. 10a, Lister & Paterson 1979). 

TBH theory predicts that the magnitude of reorien- 
tation for a given orientation is proportional to the 
magnitude of the strain increment, so that this model 
must make some assumption about the size of the lattice 
rotations for a given strain increment. The average rate 
of lattice rotation for a given strain increment is taken 
from Lister & Hobbs (1980, fig. 17d). The lattice rota- 
tions predicted by TBH theory and this model's approxi- 
mations for each strain geometry are shown in Fig. 4, 
and the resulting c-axis fabrics are compared in Fig. 5. It 
can be seen that there is a good correspondence between 
the c-axis fabrics that evolve, although no predictions 
are made for any other crystal axis. 

RECRYSTALLIZATION 

The two recrystallization processes simulated in this 
model are grain boundary migration and subgrain for- 
mation. 
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Grain boundary migration 

The choice of driving force for grain boundary migra- 
tion plays an important role in the evolution of fabrics in 
this model, so the reasons for this choice will be discussed 
in some detail. Based on my observations of dynamically 
recrystallizing octachloropropane (Jessell 1986), the 
stored energy of deformation is thought to be variable 
and related to both the crystallographic orientation of a 
grain with respect to the stress field and its internal strain 
state. TBH theory assumes a homogeneous strain state 
and heterogeneous stress state, whereas the formulation 
of the stored energy equations for this model assume a 
stress field with a uniform orientation. Hence I assume 
both roughly homogeneous stress and homogeneous 
strain. 

Kallend & Huang (1984) have demonstrated orien- 
tation-dependent variations in the stored energy of 
deformation in cold-worked copper polycrystals, and 
their results suggest that grains well oriented for slip on 
a single slip system have lower stored energy levels. In 
contrast, for experimentally deformed dunites, Karato 
(1987) has shown that grains well oriented for slip 
actually have higher dislocation density levels. I feel that 
Karato's results are consistent with the orientation- and 
strain-dependent model presented in Jessell (1986), if 
the grains poorly oriented for slip are so resistant to 
deformation that they do not deform at all, although 
there is no direct evidence for this in Karato's experi- 
ments. In this model the orientations of lowest stored 
energy are assumed to be those which have major slip 
systems parallel to the maximum shear stress orien- 
tations, as also postulated by Urai & Humphreys (1981), 
Duval (1981) and Schmid & Casey (1986). 

On this basis it is possible to create simple functions 
for the orientation dependent distribution of stored 
energy (E~o), given the observed slip systems for quartz. 
The functions used were, for simple shear: 

E~o = 1 + 2(1 - cos (0) cos (2q~)) (1) 
3 

where 0 is the plunge of the c-axis away from the plane 
of the model and q) is the plunge direction relative to the 
boundaries of the model; and for axisymmetric flatten- 
ing: 

E~o = 1 + 2 cos (20) (2) 
3 

where 0 is the angle between the incremental shortening 
direction and the c-axis. E~o can thus vary between 1/3 
and 1, so that even a perfectly oriented grain still has a 
significant stored energy level. In this study the effects of 
assuming that either the basal (a) or the prism (a) slip 
systems control the patterns of stored energy are investi- 
gated. This does not mean that the model assumes 
deformation by slip on a single system, merely that 
grains that deform in certain single slip orientations will 
have lower levels of stored energy than those that do not. 
The predicted patterns of stored energy for these slip 
systems undergoing increments of simple shear and 
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Fig. 6. The orientation-dependent distributions of the stored energy 
of deformation assumed in this model, contoured on equal-area 
lower-hemisphere projections. Each projection represents one combi- 
nation of a deformation geometry with one controlling slip system. 
(a) Simple shear and basal (a). (b) Simple shear and prism (a). 

(c) Axisymmetric flattening and basal (a). 

axially symmetric flattening are shown in Fig. 6. These 
distributions assume that the stored energy of deforma- 
tion is the same for a single basal plane (a) direction slip 
as for a combination of slips on two basal plane (a) 
directions (and similarly for one and two prism plane (a) 
direction slips). 

Since the strain is homogeneous in this model, vari- 
ations in internal strain state only arise when considering 
grains of different ages, which in turn only arise when 
considering boundaries involving recently formed sub- 
grains. New grains and subgrains are assumed to have no 
stored energy, but as they deform they asymptotically 
reach the stored energy level of old grains with the same 
orientation. The function used was: 

Es = Eso(1 - 0.5'), (3) 

where Eso is the orientation-dependent stored energy 
from equation (1) or (2), and t is the number of incre- 
ments since grain or subgrain formation. It is assumed 
that the material is perfectly annealed at the start of the 
simulation, so that there is an initial period of low grain 
boundary velocities. 

Grain boundary migration is simulated for each itera- 
tion in the following manner. First a point is randomly 
selected from the array. This point is then compared 
with one of its six neighbours, again chosen at random. 
If the two points both have the same orientation, the 
local area is considered to be part of a grain interior, so 
no grain boundary exists. If the two points have different 
orientations, however small (Fig. 7a), the hypothetical 
stored energy for each point based on its age and orien- 
tation is calculated. These values can vary anywhere 
between 0 (for new grains) and 1 for very poorly oriented 
old grains. The difference between the two stored energy 
levels provides the driving force for grain boundary 
migration and is used as the probability of local reorien- 
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Fig. 7. Simulation of grain boundary migration. (a) Two neighbouring points (circled) are separated by an inferred grain 
boundary (dotted line), and are compared by the recrystallization algorithm. (b) The algorithm calculates that point 2 has 
a lower stored energy than point 6, and chooses whether to switch the orientation of point 6 to that of point 2 with a 
probability defined by the contrast in stored energy levels. In this case it chose to switch the orientation, and a grain 

boundary migration event has taken place. 

tation of the higher stored energy point to the orientation 
of the lower stored energy point (Fig. 7b). 

The whole process, starting with the random choice of 
a point in the array, is carried out a large number of times 
for each deformation increment, the actual number 
determining the mobility of the grain boundaries. A 
mobility of 1 is arbitrarily defined as carrying out this 
process 10,000 times for each increment of deformation, 
or on average once for each point in the array, increasing 
the mobility increases grain boundary velocities for a 
given driving force. 

Since this model has unspecified spatial dimensions, 
apart from the lower grain size limit of a single point, an 
increase in grain boundary mobility is geometrically 
equivalent to a decrease in initial grain size, so the choice 
of mobilities is somewhat arbitrary, although the dis- 
crete nature of the points influences the smallest grain 
boundary bulge dimension. Direct evidence for grain 
boundary velocities in deforming polycrystals comes 
from experiments such as those of Urai (1983, in carnal- 

lite), Wilson & Russell-Head (1982, in ice) and Means 
(1983, in octachloropropane), and Tullis & Yund (1982) 
provide values for grain growth in quartz. In this model 
mobilities are chosen so that for a given strain, the 
dimensionless ratio of the average distance moved by a 
grain boundary to the grain size is within an order of 
magnitude of that seen in octachloropropane, as 
measured by the author (unpublished results). 

Subgrain formation 

In this model subgrains only form at grain boundaries, 
which excludes the type of intra-granular subgrain for- 
mation process reported by Etheridge (1975) and Bell 
(1979). When neighbouring points are compared during 
grain boundary migration modeling, and are found to 
have different orientations, there is in each case a finite 
probability that instead of a grain boundary event taking 
place, a subgrain is formed (Fig. 8). The rate of subgrain 
formation is controlled by this probability. There are 
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Fig. 8. Simulation of subgrain formation. (a) Two neighbouring points (circled) are separated by a grain boundary (dotted 
line), and are compared by the recrystallization algorithm. (b) According to a preset probability the algorithm chooses 
whether to nucleate a subgrain, as it does in this case, and part of the first chosen grain is replaced by material with a new 

orientation. 
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two further restrictions to the formation of subgrains: 
the stored energy of the host grain must reach a threshold 
level of 0.2, and the host grain must have an area of at 
least 20 units. The initial size of the subgrains is about 9 
units, and their future growth and lattice reorientations 
are governed by the same principles as original grains. 
The new subgrain is superimposed only over the host 
grain, such that all points that lie within a hexagon 
centered over the chosen point, with sides of three 
points, become part of the subgrain. As a result there is 
some variation in initial subgrain size dependent on the 
local geometry of the grain boundary. The c-axis orien- 
tation of the subgrain is randomly chosen from within a 
10 ° angular separation of the host grain. 

DISCUSSION 

As in any simulation, a set of simplifying assumptions 
had to be made in order to reduce the problem to 
manageable proportions. Some of the limitations and 
foreseeable consequences of these assumptions are dis- 
cussed below. 

Strain heterogeneity 

The problem of heterogeneous deformation is not 
considered in this model. Mancktelow (1981) has 
demonstrated that strain contrasts can be related to 
grain orientations in a naturally deformed quartzite. 
Since the simplified lattice rotations are based on TBH 
theory, which assumes homogeneous strain, this model 
does likewise. The introduction of heterogeneous strain 
would be a much more complex problem, even if it 
would be potentially more rewarding. The exclusion of 
the interaction between intra-grain strains and lattice 
orientations is a particular weakness of this simulation. 
In principle it may be possible to replace the strain 
algorithms with a finite-difference approach, although 
as yet this has not been attempted. 

Lattice rotations 

The inclusion of genuine TBH theory lattice rotations 
will greatly enhance the predictive powers of this model, 
since the full crystallographic description of preferred 
orientations could then be compared with natural and 
experimental examples. The inclusion of the real TBH 
model has now been carried out and the results will be 
the subject of a future paper. 

and observed the development of characteristic dis- 
location densities behind the migrating boundary. The 
introduction of local intra-grain histories would con- 
siderably complicate the analysis. 

Another grain boundary phenomenon ignored by this 
simulation is the bimodal distribution of grain boundary 
velocities observed by Urai (1983) in experimentally 
deformed bischofite. The resolution of the array of 
points compared to grain sizes does not allow this 
phenomenon to be studied here, although the use of the 
whole array to simulate a bicrystal may make this feas- 
ible. The resolution of the underlying array determines 
the lower limits to grain size and grain boundary bulge 
wavelength, and again these microstructures could be 
better studied using a larger starting grain size. 

It seems reasonable to relate the pattern of stored 
energy of deformation to the critical resolved shear 
stress values. Hence if temperature, strain rate and the 
partial pressure of H20 affect the flow behaviour of 
quartz by changing critical resolved shear stress values as 
could be interpreted from the work of Tullis etal. (1973), 
Blacic (1975) and Hobbs (1985), these factors should 
also affect the patterns of stored energy, so that, in a 
more complete model, lattice reorientation patterns 
would systematically vary with changes in the patterns of 
stored energy. 

Subgrain formation 

The progressive misorientation of subgrains has been 
investigated by Guillope & Poirier (1979); however the 
process is not yet understood to the extent that specific 
predictions about the formation and interaction of sub- 
grains can confidently be made, even for very simple 
deformations and grain boundary geometries. Gottstein 
et al. (1979) have demonstrated that subgrains in single 
crystals of copper deformed in tension have twin 
relationships with the host, and this may also apply to 
minerals (Av6 Lallement 1978). Guillope & Poirier 
(1979), based on their experiments on salt, suggest that 
"nucleation in the classical sense probably does not 
exist", and no attempt was made here to introduce new 
completely random orientations, although this would be 
simple enough to do. Instead an upper limit of 10 ° was 
imposed on the initial misorientation of the subgrain, 
although further misorientation could occur due to the 
differing lattice rotation trajectories that the host and 
subgrain follow during subsequent deformation. 

Extending the model 

The driving force for grain boundary migration 

This model implies that the local stored energy levels 
are independent of the age structure of the grains. In 
fact, as has been shown by the experiments of Means 
(1983) and Urai (1983), material in different parts of the 
same grain can have been swept by grain boundaries at 
different stages of its history. Toriumi (1982) annealed 
naturally deformed peridotites at atmospheric pressure 

The model as it stands investigates one driving force 
for grain boundary migration, one type of subgrain 
formation, and one type of lattice rotation, and it may be 
worthwhile exploring other aspects of recrystallization. 
Using this type of model, three-dimensional static grain 
growth has been carried out by Anderson et al. (1985), 
and only minor differences between the behaviour of the 
two- and three-dimensional polycrystals was found, so it 
is probably not necessary to extend the present model to 
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three dimensions. Other aspects of grain boundary 
migration could also be modeled using slight variations 
of the basic model, for example the influence of a second 
phase has been investigated by Srolovitz et al. (1984). As 
these workers have shown, this type of model is flexible 
enough to allow many aspects of recrystallization pro- 
cesses to be analysed. One process clearly of interest in 
geological materials is the modification of deformation 
fabrics by post-tectonic annealing. 

The value of this model, which primarily depends on 
the validity of the assumptions made in it, also needs to 
be tested by producing results which are consistent with 
observations from naturally and experimentally de- 
formed rocks. This is the object of the companion paper 
(Jessell 1988) which compares fabrics predicted by this 
model with some previously reported examples. 
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